Trajectory Analysis

Megan Farris, MSc Epidemiologist

Medlior Health Outcomes Research Ltd; University of Calgary

R Calgary: October 17, 2018

Repeated measures studies

- Cohort studies, that have several assessments of:
 - The exposure
 - The outcome
 - Other potential covariates
- Very expensive to conduct
- Will provide a wealth of information in regards to causal mechanisms
- May account for change over time, prognosis, trajectories etc.

Background: Trajectory modeling

• Technique used to describe growth, prognosis, development over age or time

- May provide insights to disease etiology, the developmental course of different diseases and causal inference in epidemiological studies
- Fairly new technique to medicine but has also been applied to criminology and psychology fields
- Extension of Growth Curve Modeling (GMM)

Growth Curve Modeling (Does One Type of Curve Fit All?)

- Measure average development over time of a population (your study sample)
- Capture mean trends in development and individual departures from the average trend
- Assumptions: Your sample is drawn from the same population and classified under one trajectory curve
 - Sufficient for inter-individual variability
- Implications?
 - Biases?
- Sufficient for the study of general trends
 - e.g., cancer incidence trends over time
 - Economic burden of cancer screening over time

Growth Mixture Modeling

- Extension of GCM using finite mixture models (aka latent class models)
 - Provide a natural representation of heterogeneity in a finite number of latent classes (classes meaning groups/clusters of people)
 - Allows for variation of different distributions rather than just one distribution that fits all
- You need to distinguish the sub-populations based on actual measured characteristics
 - E.g., if you have people in your cohort with a sub-population with a genetic vulnerability and a sub-population without genetic vulnerabilities
 - You would analyze these groups separately as they might have different growth curves (depending on your research question).
- Implications?
- Would we always know what these sub-populations might be?

Group-Based Trajectory Modeling (GBTM)

- Based on finite mixture modeling as well
- Assume the population is made up of distinct groups defined by their development trajectories (driven by the data)
 - This phenomenon may not be physiologically or biologically correct, but that is what you are testing
 - The bigger motivation for these models is to draw attention to different characteristics or consequences of different trajectory groups
 - Research questions might look at: Are etiologic considerations and trajectory groups modeled actually present in the population? If so, what characteristics define those groups?
- Each trajectory group is thought of as a group of individuals who follow a similar development

Main difference between GMM and GBTM

- GMM assumes there are sub-populations follow a specific growth curve
- GBTM makes no population assumptions and uses the trajectory groups produced by statistical analysis to approximate unknown distribution of trajectories that might be present in the population
 - The theory behind this implies that statistical methods are sensitive to these differences in data
 - We then as Epidemiologists need to determine if these unknown population distributions are in actual fact, real clinically relevant sub-populations

Considerations of GBTM

- First, the number of groups and their functional form
 - How big is your sample?
 - How much variability can you expect within your sample?
 - *A priori* pick a maximum number of groups to be tested on your data
 - Fit number of groups based on several criteria
 - These include both statistical considerations as well as practical (i.e., actual differences between groups)
- Justify all decisions!

GBTM: Adding predictors

- Not only can you identify sub-populations within your study, you can characterize them (adding predictors to group membership)
- What characteristics are relevant to your study population, or that might classify individuals?
- Commonly collected a baseline or at study enrollment
- Besides descriptively, you can also use a multinomial logit model to compare characteristics of one group relative to another

You can take into account attrition

• It is common to have dropout in a prospective cohort study

- With GBTM you can:
 - Model the dropout into the estimation of trajectory groups
 - Test if dropout influences trajectory group assignment
 - Determine if there is differential dropout between trajectory groups

Add in time-varying covariates

- Variables that change over time and captured in your study!
- Difficult to analyze
 - May be issues of missing data that arise
 - Assumptions may be hard to account for
 - Temporality may be questionable (in specific circumstances)
 - Computationally intensive!
- Only appropriate with the right research question
- Are these trajectories affected by other variables that change over time?
 - Do these events alter the trajectory itself?
 - Should they be modeled as an additional outcome?

MSc Thesis: Identifying quality of life trajectories after a prostate cancer diagnosis

Megan Farris,^{1,2} Karen Kopciuk,^{1,3,4} Kerry Courneya,⁵ Elizabeth McGregor,⁶ Qinggang Wang,¹ Christine Friedenreich^{1,2,3}

- 1. Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services
- 2. Department of Community Health Sciences, Cumming School of Medicine, University of Calgary
- 3. Department of Oncology, Cumming School of Medicine, University of Calgary
- 4. Department of Mathematics and Statistics, University of Calgary
- 5. Faculty of Physical Education and Recreation, University of Alberta
- 6. Alberta Cancer Prevention Legacy Fund, CancerControl Alberta, Alberta Health Services
- MSc Thesis Defense, August 10th, 2016, Calgary, AB
- Work published in: International Journal of Cancer

Burden of Prostate Cancer

- Prostate cancer second most common cancer worldwide in men
- Five-year survival rates between 80-95% in industrialized countries
 - 1990s Prostate Specific Antigen (PSA) screening program
- Early detection and over-detection
- Consequences of over-treatment lead to:
 - Long-term residual side effects
 - Reduced functioning
 - Compromised mental state
- Overall reduced quality of life (QoL) often occurs

Bray F RJ, 2013; Ferlay J S, 2013

Measures of Prevention through Physical Activity

- Many prognostic non-modifiable risk factors for prostate cancer
- Physical activity is a modifiable behaviour
 - Promotes overall health status
 - Known to increase QoL in healthy individuals
- Many studies have examined physical activity and how it relates to QoL.
 - Cross-sectional/short-term

Patterns in QoL

• QoL outcomes are well-documented after diagnosis of prostate cancer

Traditional Longitudinal

- Assumes one average QoL for population
- Miss subtle differences?

Group-Based Trajectory Modelling

- No distribution assumptions
- Data determines trajectory groups that might be found

Objectives

• To examine post-diagnosis QoL trajectory groups in a cohort of prostate cancer survivors during the follow-up period

Study Population/Inclusion Criteria

- Stage T2 or greater, identified through Alberta Cancer Registry
- Under the age of 80 years
- No previous cancer diagnosis

Data Collection Timeline

- Quality of life was collected from the SF-36 self-reported questionnaire
- Physical component summary (PCS) and mental component summary (MCS) scores were derived

Data Collection

- QoL was collected from the SF-36 self-reported questionnaire
 - Collected by self-report questionnaire (all time-points)
 - Validated questionnaire
 - Measures general QoL
 - All eight domain scores of the SF-36 needed to be present
 - Physical component summary (PCS) and mental component summary (MCS) scores were derived
- Physical activity was collected by the lifetime total physical activity questionnaire and past-year total physical activity questionnaires
 - LTPAQ collected by interview
 - PYTPAQ collected by interview (1st follow-up) and questionnaire (2nd and 3rd follow-up)
 - Reliable and validated questionnaire
 - Measures all types, intensities, durations and frequencies

Data Collection

- Interviews from prior case-control study collected:
 - Personal health history
 - Prostate cancer related variables
 - Lifestyle behaviours and study characteristics
 - Anthropometric measurements

Statistical Analysis

- Group-based trajectory modelling are finite mixture models used to approximate unknown distributions of physical and mental QoL trajectories
- Influential dropout was examined
- Fit behaviours and prognostic factors
- Sensitivity analyses were carried out with complete follow-up assessments and time-lagged models for previous QoL score

Traj for $STATA^{\ensuremath{\mathbb{R}}}$

Secondary Statistical Analysis: Multinomial Logistic Regression

- Influential dropout was examined according to model fit and dropout probabilities between groups
- Fit behaviours and prognostic factors including:
 - Age at diagnosis (years)
 - Aggressive vs. non-aggressive disease (Gleason score ≥ 8 , stage > II)
 - Radiation therapy
 - Hormone therapy
 - Prostatectomy
 - Post-diagnosis Charlson co-morbidity score
 - Body mass index (BMI) kg/m²
 - Smoking status at diagnosis
- Sensitivity analyses were carried out with complete follow-up assessments and timelagged models for previous QoL score

Characteristics of Prostate Cancer Survivors in Alberta

Characteristics	Total sample
	N (%)
Stage of cancer	
II (T1/T2, N0, M0)	630 (77.1%)
III (T3, N0, M0)	57 (7.0%)
III/IV (T3, NX, MX)	75 (9.2%)
IV	55 (6.7%)
Primary Treatment	
Prostatectomy	240 (29.4%)
Hormone therapy	517 (63.3%)
Radiation therapy	359 (43.9%)
Relationship status	
Married/ common law	689 (84.3%)
Other	128 (15.7%)
	Mean (SD)
Age at diagnosis (years)	67.3 (7.4)
Body mass index (kg/m ²)	28.0 (3.8)

Characteristics of Prostate Cancer Survivors in Alberta

Reasons for loss to follow-up data collection timeline

*One or more SF-36 domain scores were missing

Group-Based Trajectory Model Results

Physical QoL

Mental QoL

Characterizing Trajectories

Prognostic/behavioural	Medium versus High QoL		Low versus High QoL	
factors	RRR a	95% CI	RRR ^a	95% CI
Physical QoL trajectories				
Age at diagnosis (years)	1.04	0.99-1.08	1.11	1.06-1.16
Aggressiveness of disease ^b	1.41	0.72 - 2.79	1.50	0.76 - 2.95
Radiation therapy ^b	1.10	0.57 - 2.12	0.64	0.35 - 1.17
Hormone therapy ^b	1.76	1.02 - 3.02	1.99	1.14 - 3.48
Prostatectomy ^b	1.25	0.58 - 2.68	2.29	1.07 - 4.89
Charlson co-morbidity score	1.59	1.29 - 1.95	2.04	1.66 - 2.51
BMI (kg/m ²)	1.09	$1.02 ext{-} 1.17$	1.18	1.09 - 1.27
Smoking status ^b	1.71	0.75 - 3.90	2.77	1.23-6.26

^a All models were adjusted for time-varying physical activity, dropout probabilities and all other factors in tables ^b Dichotomous variables

Characterizing Trajectories

Prognostic/behavioural	Medium versus High QoL		Low versus High QoL	
factors	RRR a	95% CI	RRR a	95% CI
<u>Mental QoL trajectories</u>				
Age at diagnosis (years)	1.06	1.01-1.11	1.00	0.97-1.04
Aggressiveness of disease ^b	0.89	0.44-1.81	0.40	0.19-0.86
Radiation therapy ^b	0.57	0.30-1.10	0.50	0.28-0.89
Hormone therapy ^b	1.61	0.82 - 3.16	1.01	0.61-1.67
Prostatectomy ^b	3.32	1.23 - 8.94	1.73	0.89-3.36
Charlson co-morbidity score	1.32	1.12 - 1.56	1.18	1.03-1.36
BMI (kg/m ²)	1.04	0.96-1.12	1.04	0.97-1.10
Smoking status ^b	1.79	0.75 - 4.24	2.35	1.27 - 4.36

^a All models were adjusted for time-varying physical activity, dropout probabilities and all other factors in tables ^b Dichotomous variables

Mean QoL Coefficients & Standard Errors

Trajectory groups	Baseline intercept	Slope	Physical activity slope
Physical quality of li			
High-maintaining	$49.64~(1.38)^{\mathrm{a}}$	-0.03 (0.49)	0.02 (0.01) ^b
Medium-declining	41.68 (1.16) ^a	$-1.85(0.46)^{a}$	$0.02 (0.01)^{a}$
Low-maintaining	$24.37\ (1.28)^{a}$	0.19(0.55)	0.03 (0.01) ^b
Mental quality of life	<u>trajectories</u>		
High-increasing	$54.59\ (0.76)$ a	0.45 (0.30)	0.01 (0.01)
Medium-declining	$57.32\ (2.37)^{\mathrm{a}}$	-6.98 (1.13) ^a	0.01 (0.01)
Low-increasing	$25.99\ (1.97)$ a	2.62~(0.84) b	0.01 (0.01)

 a p-value < 0.001.

^b **p**-value < 0.01.

Things to keep in mind

- This is a newer technique that may be very powerful for estimating causal inference in Epidemiological studies
- Still an evolving analysis method
- Follow his recommended reporting framework (applicable to all analysis types)
 - Rationale and transparency are key!!
- Be mindful of limitations this type of analysis might have (due to assumptions etc.)

Conclusion

- First study to detect three distinct groups of physical and mental QoL up to 10 years post-prostate cancer diagnosis
- Confirmation of these findings is warranted in this population
- Characteristics of QoL trajectories will lead to a better understanding of differences between groups and how health professionals and researchers can use this information

Acknowledgements

Supervisory committee:

- Dr. Christine Friedenreich
- Dr. Kerry Courneya
- Dr. Karen Kopciuk
- Dr. Elizabeth McGregor

Study staff: Aleata Rhyorchuck, Sana Fakih, Jodi Parrotta, Linda Davison, Pearle Cooke, Nicole Slot, Carol-Anne Zawalykut, Catherine Munro, Carla Quesnel, Yvonne LeBlanc, Sarah MacLaughlin and Eileen Shaw

Megan.farris11@gmail.com